nvim_config/typings/numpy/lib/twodim_base.pyi

134 lines
4.5 KiB
Python

"""
This type stub file was generated by pyright.
"""
from collections.abc import Callable, Sequence
from typing import Any, TypeVar, Union, overload
from numpy import _OrderCF, bool_, complexfloating, datetime64, float64, floating, generic, int_, intp, number, object_, signedinteger, timedelta64
from numpy._typing import ArrayLike, DTypeLike, NDArray, _ArrayLike, _ArrayLikeComplex_co, _ArrayLikeFloat_co, _ArrayLikeInt_co, _ArrayLikeObject_co, _DTypeLike, _SupportsArrayFunc
_T = TypeVar("_T")
_SCT = TypeVar("_SCT", bound=generic)
_MaskFunc = Callable[[NDArray[int_], _T], NDArray[Union[number[Any], bool_, timedelta64, datetime64, object_]],]
__all__: list[str]
@overload
def fliplr(m: _ArrayLike[_SCT]) -> NDArray[_SCT]:
...
@overload
def fliplr(m: ArrayLike) -> NDArray[Any]:
...
@overload
def flipud(m: _ArrayLike[_SCT]) -> NDArray[_SCT]:
...
@overload
def flipud(m: ArrayLike) -> NDArray[Any]:
...
@overload
def eye(N: int, M: None | int = ..., k: int = ..., dtype: None = ..., order: _OrderCF = ..., *, like: None | _SupportsArrayFunc = ...) -> NDArray[float64]:
...
@overload
def eye(N: int, M: None | int = ..., k: int = ..., dtype: _DTypeLike[_SCT] = ..., order: _OrderCF = ..., *, like: None | _SupportsArrayFunc = ...) -> NDArray[_SCT]:
...
@overload
def eye(N: int, M: None | int = ..., k: int = ..., dtype: DTypeLike = ..., order: _OrderCF = ..., *, like: None | _SupportsArrayFunc = ...) -> NDArray[Any]:
...
@overload
def diag(v: _ArrayLike[_SCT], k: int = ...) -> NDArray[_SCT]:
...
@overload
def diag(v: ArrayLike, k: int = ...) -> NDArray[Any]:
...
@overload
def diagflat(v: _ArrayLike[_SCT], k: int = ...) -> NDArray[_SCT]:
...
@overload
def diagflat(v: ArrayLike, k: int = ...) -> NDArray[Any]:
...
@overload
def tri(N: int, M: None | int = ..., k: int = ..., dtype: None = ..., *, like: None | _SupportsArrayFunc = ...) -> NDArray[float64]:
...
@overload
def tri(N: int, M: None | int = ..., k: int = ..., dtype: _DTypeLike[_SCT] = ..., *, like: None | _SupportsArrayFunc = ...) -> NDArray[_SCT]:
...
@overload
def tri(N: int, M: None | int = ..., k: int = ..., dtype: DTypeLike = ..., *, like: None | _SupportsArrayFunc = ...) -> NDArray[Any]:
...
@overload
def tril(v: _ArrayLike[_SCT], k: int = ...) -> NDArray[_SCT]:
...
@overload
def tril(v: ArrayLike, k: int = ...) -> NDArray[Any]:
...
@overload
def triu(v: _ArrayLike[_SCT], k: int = ...) -> NDArray[_SCT]:
...
@overload
def triu(v: ArrayLike, k: int = ...) -> NDArray[Any]:
...
@overload
def vander(x: _ArrayLikeInt_co, N: None | int = ..., increasing: bool = ...) -> NDArray[signedinteger[Any]]:
...
@overload
def vander(x: _ArrayLikeFloat_co, N: None | int = ..., increasing: bool = ...) -> NDArray[floating[Any]]:
...
@overload
def vander(x: _ArrayLikeComplex_co, N: None | int = ..., increasing: bool = ...) -> NDArray[complexfloating[Any, Any]]:
...
@overload
def vander(x: _ArrayLikeObject_co, N: None | int = ..., increasing: bool = ...) -> NDArray[object_]:
...
@overload
def histogram2d(x: _ArrayLikeFloat_co, y: _ArrayLikeFloat_co, bins: int | Sequence[int] = ..., range: None | _ArrayLikeFloat_co = ..., density: None | bool = ..., weights: None | _ArrayLikeFloat_co = ...) -> tuple[NDArray[float64], NDArray[floating[Any]], NDArray[floating[Any]],]:
...
@overload
def histogram2d(x: _ArrayLikeComplex_co, y: _ArrayLikeComplex_co, bins: int | Sequence[int] = ..., range: None | _ArrayLikeFloat_co = ..., density: None | bool = ..., weights: None | _ArrayLikeFloat_co = ...) -> tuple[NDArray[float64], NDArray[complexfloating[Any, Any]], NDArray[complexfloating[Any, Any]],]:
...
@overload
def histogram2d(x: _ArrayLikeComplex_co, y: _ArrayLikeComplex_co, bins: Sequence[_ArrayLikeInt_co], range: None | _ArrayLikeFloat_co = ..., density: None | bool = ..., weights: None | _ArrayLikeFloat_co = ...) -> tuple[NDArray[float64], NDArray[Any], NDArray[Any],]:
...
@overload
def mask_indices(n: int, mask_func: _MaskFunc[int], k: int = ...) -> tuple[NDArray[intp], NDArray[intp]]:
...
@overload
def mask_indices(n: int, mask_func: _MaskFunc[_T], k: _T) -> tuple[NDArray[intp], NDArray[intp]]:
...
def tril_indices(n: int, k: int = ..., m: None | int = ...) -> tuple[NDArray[int_], NDArray[int_]]:
...
def tril_indices_from(arr: NDArray[Any], k: int = ...) -> tuple[NDArray[int_], NDArray[int_]]:
...
def triu_indices(n: int, k: int = ..., m: None | int = ...) -> tuple[NDArray[int_], NDArray[int_]]:
...
def triu_indices_from(arr: NDArray[Any], k: int = ...) -> tuple[NDArray[int_], NDArray[int_]]:
...