Compare commits
No commits in common. "f15eb0cf515af8d8c73893de435f44f8695b2d91" and "a65149a619558b10f1a2ffe54b175c40c4d8b933" have entirely different histories.
f15eb0cf51
...
a65149a619
5
.gitignore
vendored
5
.gitignore
vendored
@ -1,7 +1,5 @@
|
||||
# Builds
|
||||
build/
|
||||
Debug/
|
||||
Testing/
|
||||
|
||||
# Google Tests
|
||||
tests/lib/
|
||||
@ -9,6 +7,3 @@ tests/lib/
|
||||
# Jet Brains
|
||||
.idea/
|
||||
cmake-build-debug/
|
||||
|
||||
# Cache dir
|
||||
.cache
|
||||
|
@ -1,47 +1,32 @@
|
||||
cmake_minimum_required(VERSION 3.9)
|
||||
set(NAME "cudaCAC")
|
||||
project(${NAME} LANGUAGES CUDA CXX)
|
||||
project(MyProject LANGUAGES CUDA CXX)
|
||||
|
||||
enable_testing()
|
||||
set(CMAKE_EXPORT_COMPILE_COMMANDS ON)
|
||||
|
||||
# Default settings
|
||||
add_compile_options(-Wall -Wextra -Wpedantic)
|
||||
|
||||
set(CMAKE_CXX_STANDARD 17)
|
||||
set(CMAKE_CUDA_ARCHITECTURES 61)
|
||||
set(CUDA_SEPARABLE_COMPILATION ON)
|
||||
|
||||
# Add Vec3 as a dependency
|
||||
include(FetchContent)
|
||||
FetchContent_Declare(Vec3
|
||||
GIT_REPOSITORY https://www.alexselimov.com/git/aselimov/Vec3.git
|
||||
)
|
||||
|
||||
FetchContent_GetProperties(Vec3)
|
||||
if(NOT Vec3_POPULATED)
|
||||
FetchContent_MakeAvailable(Vec3)
|
||||
include_directories(${Vec3_SOURCE_DIR})
|
||||
endif()
|
||||
|
||||
include_directories(src)
|
||||
include_directories(kernels)
|
||||
include_directories(/usr/local/cuda-12.8/include)
|
||||
|
||||
|
||||
add_subdirectory(src)
|
||||
add_subdirectory(kernels)
|
||||
add_subdirectory(tests)
|
||||
|
||||
add_executable(${NAME} main.cpp)
|
||||
install(DIRECTORY src/ DESTINATION src/)
|
||||
add_executable(${CMAKE_PROJECT_NAME}_run main.cpp)
|
||||
|
||||
|
||||
|
||||
target_link_libraries(
|
||||
${NAME}
|
||||
${CMAKE_PROJECT_NAME}_run
|
||||
PRIVATE
|
||||
${NAME}_lib
|
||||
${NAME}_cuda_lib
|
||||
|
||||
${CMAKE_PROJECT_NAME}_lib
|
||||
${CMAKE_PROJECT_NAME}_cuda_lib
|
||||
${CUDA_LIBRARIES}
|
||||
)
|
||||
|
||||
|
@ -1,4 +1,4 @@
|
||||
project(${NAME}_cuda_lib CUDA CXX)
|
||||
project(${CMAKE_PROJECT_NAME}_cuda_lib CUDA CXX)
|
||||
|
||||
set(HEADER_FILES
|
||||
hello_world.h
|
||||
@ -8,9 +8,11 @@ set(SOURCE_FILES
|
||||
)
|
||||
|
||||
# The library contains header and source files.
|
||||
add_library(${NAME}_cuda_lib STATIC
|
||||
add_library(${CMAKE_PROJECT_NAME}_cuda_lib STATIC
|
||||
${SOURCE_FILES}
|
||||
${HEADER_FILES}
|
||||
)
|
||||
|
||||
target_compile_options(${CMAKE_PROJECT_NAME}_cuda_lib PRIVATE -Wno-gnu-line-marker -Wno-pedantic)
|
||||
if(CMAKE_COMPILER_IS_GNUCXX)
|
||||
target_compile_options(${CMAKE_PROJECT_NAME}_cuda_lib PRIVATE -Wno-gnu-line-marker)
|
||||
endif()
|
||||
|
10
main.cpp
10
main.cpp
@ -1,10 +1,10 @@
|
||||
#include "particle.hpp"
|
||||
#include "vec3.h"
|
||||
#include "hello_world.h"
|
||||
#include <iostream>
|
||||
|
||||
int main() {
|
||||
Particle<float> test = {
|
||||
{0.0, 0.0, 0.0}, {0.0, 0.0, 0.0}, {0.0, 0.0, 0.0}, 10};
|
||||
std::cout << test.pos.x << " " << test.pos.y << " " << test.pos.z;
|
||||
std::cout << "Starting CUDA example..." << std::endl; // Using endl to flush
|
||||
check_cuda();
|
||||
launch_hello_cuda();
|
||||
std::cout << "Ending CUDA example" << std::endl; // Using endl to flush
|
||||
return 0;
|
||||
}
|
||||
|
@ -1,17 +1,16 @@
|
||||
project(${NAME}_lib CUDA CXX)
|
||||
project(${CMAKE_PROJECT_NAME}_lib CUDA CXX)
|
||||
|
||||
set(HEADER_FILES
|
||||
particle.hpp
|
||||
simulation.hpp
|
||||
box.hpp
|
||||
pair_potentials.hpp
|
||||
./test.h
|
||||
)
|
||||
set(SOURCE_FILES
|
||||
pair_potentials.cpp
|
||||
./test.cpp
|
||||
)
|
||||
|
||||
# The library contains header and source files.
|
||||
add_library(${NAME}_lib
|
||||
${HEADER_FILES}
|
||||
add_library(${CMAKE_PROJECT_NAME}_lib
|
||||
${SOURCE_FILES}
|
||||
${HEADER_FILES}
|
||||
)
|
||||
|
||||
target_include_directories(${CMAKE_PROJECT_NAME}_lib PUBLIC ${CMAKE_CURRENT_SOURCE_DIR})
|
||||
|
22
src/box.hpp
22
src/box.hpp
@ -1,22 +0,0 @@
|
||||
#ifndef BOX_H
|
||||
#define BOX_H
|
||||
|
||||
/**
|
||||
* Struct representing the simulation box.
|
||||
* Currently the simulation box is always assumed to be perfectly rectangular.
|
||||
* This code does not support shearing the box. This functionality may be added
|
||||
* in later.
|
||||
*/
|
||||
template <typename T> struct Box {
|
||||
T xlo;
|
||||
T xhi;
|
||||
T ylo;
|
||||
T yhi;
|
||||
T zlo;
|
||||
T zhi;
|
||||
bool x_is_periodic;
|
||||
bool y_is_periodic;
|
||||
bool z_is_periodic;
|
||||
};
|
||||
|
||||
#endif
|
@ -1,33 +0,0 @@
|
||||
#include "pair_potentials.hpp"
|
||||
#include <cmath>
|
||||
|
||||
PairPotential::~PairPotential() {};
|
||||
/**
|
||||
* Calculate the Lennard-Jones energy and force for the current particle pair
|
||||
* described by displacement vector r
|
||||
*/
|
||||
ForceAndEnergy LennardJones::calc_force_and_energy(Vec3<real> r) {
|
||||
real rmagsq = r.squared_norm2();
|
||||
if (rmagsq < this->m_rcutoffsq && rmagsq > 0.0) {
|
||||
real inv_rmag = 1 / std::sqrt(rmagsq);
|
||||
|
||||
// Pre-Compute the terms (doing this saves on multiple devisions/pow
|
||||
// function call)
|
||||
real sigma_r = m_sigma * inv_rmag;
|
||||
real sigma_r6 = sigma_r * sigma_r * sigma_r * sigma_r * sigma_r * sigma_r;
|
||||
real sigma_r12 = sigma_r6 * sigma_r6;
|
||||
|
||||
// Get the energy
|
||||
real energy = 4.0 * m_epsilon * (sigma_r12 - sigma_r6);
|
||||
|
||||
// Get the force vector
|
||||
real force_mag = 4.0 * m_epsilon *
|
||||
(12.0 * sigma_r12 * inv_rmag - 6.0 * sigma_r6 * inv_rmag);
|
||||
Vec3<real> force = r.scale(force_mag * inv_rmag);
|
||||
|
||||
return {energy, force};
|
||||
|
||||
} else {
|
||||
return ForceAndEnergy::zero();
|
||||
}
|
||||
};
|
@ -1,49 +0,0 @@
|
||||
#ifndef POTENTIALS_H
|
||||
#define POTENTIALS_H
|
||||
|
||||
#include "precision.hpp"
|
||||
#include "vec3.h"
|
||||
|
||||
/**
|
||||
* Result struct for the Pair Potential
|
||||
*/
|
||||
struct ForceAndEnergy {
|
||||
real energy;
|
||||
Vec3<real> force;
|
||||
|
||||
inline static ForceAndEnergy zero() { return {0.0, {0.0, 0.0, 0.0}}; };
|
||||
};
|
||||
|
||||
/**
|
||||
* Abstract implementation of a Pair Potential.
|
||||
* Pair potentials are potentials which depend solely on the distance
|
||||
* between two particles. These do not include multi-body potentials such as
|
||||
* EAM
|
||||
*
|
||||
*/
|
||||
struct PairPotential {
|
||||
real m_rcutoffsq;
|
||||
|
||||
PairPotential(real rcutoff) : m_rcutoffsq(rcutoff * rcutoff) {};
|
||||
virtual ~PairPotential() = 0;
|
||||
|
||||
/**
|
||||
* Calculate the force and energy for a specific atom pair based on a
|
||||
* displacement vector r.
|
||||
*/
|
||||
virtual ForceAndEnergy calc_force_and_energy(Vec3<real> r) = 0;
|
||||
};
|
||||
|
||||
struct LennardJones : PairPotential {
|
||||
real m_epsilon;
|
||||
real m_sigma;
|
||||
|
||||
LennardJones(real sigma, real epsilon, real rcutoff)
|
||||
: PairPotential(rcutoff), m_epsilon(epsilon), m_sigma(sigma) {};
|
||||
|
||||
ForceAndEnergy calc_force_and_energy(Vec3<real> r);
|
||||
|
||||
~LennardJones() {};
|
||||
};
|
||||
|
||||
#endif
|
@ -1,18 +0,0 @@
|
||||
#ifndef PARTICLE_H
|
||||
#define PARTICLE_H
|
||||
|
||||
#include "vec3.h"
|
||||
|
||||
/**
|
||||
* Class representing a single molecular dynamics particle.
|
||||
* This class is only used on the host side of the code and is converted
|
||||
* to the device arrays.
|
||||
*/
|
||||
template <typename T = float> struct Particle {
|
||||
Vec3<T> pos;
|
||||
Vec3<T> vel;
|
||||
Vec3<T> force;
|
||||
T mass;
|
||||
};
|
||||
|
||||
#endif
|
@ -1,15 +0,0 @@
|
||||
#ifndef PRECISION_H
|
||||
#define PRECISION_H
|
||||
|
||||
#ifdef USE_FLOATS
|
||||
|
||||
/*
|
||||
* If macro USE_FLOATS is set then the default type will be floating point
|
||||
* precision. Otherwise we use double precision by default
|
||||
*/
|
||||
typedef float real;
|
||||
#else
|
||||
typedef double real;
|
||||
#endif
|
||||
|
||||
#endif
|
@ -1,17 +0,0 @@
|
||||
#ifndef SIMULATION_H
|
||||
#define SIMULATION_H
|
||||
|
||||
#include "box.hpp"
|
||||
#include "particle.hpp"
|
||||
#include <vector>
|
||||
|
||||
template <typename T> class Simulation {
|
||||
// Simulation State variables
|
||||
T timestep;
|
||||
Box<T> box;
|
||||
|
||||
// Host Data
|
||||
std::vector<Particle<T>> particles;
|
||||
};
|
||||
|
||||
#endif
|
4
src/test.cpp
Normal file
4
src/test.cpp
Normal file
@ -0,0 +1,4 @@
|
||||
#include "test.h"
|
||||
#include <iostream>
|
||||
|
||||
void test_hello() { std::cout << "Hello!"; }
|
2
src/test.h
Normal file
2
src/test.h
Normal file
@ -0,0 +1,2 @@
|
||||
#include <iostream>
|
||||
void test_hello();
|
@ -1,9 +1,8 @@
|
||||
include_directories(${gtest_SOURCE_DIR}/include ${gtest_SOURCE_DIR})
|
||||
|
||||
add_executable(${NAME}_tests
|
||||
test_potential.cpp
|
||||
add_executable(Unit_Tests_run
|
||||
test_example.cpp
|
||||
)
|
||||
|
||||
target_link_libraries(${NAME}_tests gtest gtest_main)
|
||||
target_link_libraries(${NAME}_tests ${CMAKE_PROJECT_NAME}_lib)
|
||||
add_test(NAME ${NAME}Tests COMMAND ${CMAKE_BINARY_DIR}/tests/unit_tests/${NAME}_tests)
|
||||
target_link_libraries(Unit_Tests_run gtest gtest_main)
|
||||
target_link_libraries(Unit_Tests_run ${CMAKE_PROJECT_NAME}_lib)
|
@ -1,174 +0,0 @@
|
||||
#include "pair_potentials.hpp"
|
||||
#include "precision.hpp"
|
||||
#include "gtest/gtest.h"
|
||||
#include <cmath>
|
||||
|
||||
class LennardJonesTest : public ::testing::Test {
|
||||
protected:
|
||||
void SetUp() override {
|
||||
// Default parameters
|
||||
sigma = 1.0;
|
||||
epsilon = 1.0;
|
||||
r_cutoff = 2.5;
|
||||
|
||||
// Create default LennardJones object
|
||||
lj = new LennardJones(sigma, epsilon, r_cutoff);
|
||||
}
|
||||
|
||||
void TearDown() override { delete lj; }
|
||||
|
||||
real sigma;
|
||||
real epsilon;
|
||||
real r_cutoff;
|
||||
LennardJones *lj;
|
||||
|
||||
// Helper function to compare Vec3 values with tolerance
|
||||
void expect_vec3_near(const Vec3<real> &expected, const Vec3<real> &actual,
|
||||
real tolerance) {
|
||||
EXPECT_NEAR(expected.x, actual.x, tolerance);
|
||||
EXPECT_NEAR(expected.y, actual.y, tolerance);
|
||||
EXPECT_NEAR(expected.z, actual.z, tolerance);
|
||||
}
|
||||
};
|
||||
|
||||
TEST_F(LennardJonesTest, ZeroDistance) {
|
||||
// At zero distance, the calculation should return zero force and energy
|
||||
Vec3<real> r = {0.0, 0.0, 0.0};
|
||||
auto result = lj->calc_force_and_energy(r);
|
||||
|
||||
EXPECT_EQ(0.0, result.energy);
|
||||
expect_vec3_near({0.0, 0.0, 0.0}, result.force, 1e-10);
|
||||
}
|
||||
|
||||
TEST_F(LennardJonesTest, BeyondCutoff) {
|
||||
// Distance beyond cutoff should return zero force and energy
|
||||
Vec3<real> r = {3.0, 0.0, 0.0}; // 3.0 > r_cutoff (2.5)
|
||||
auto result = lj->calc_force_and_energy(r);
|
||||
|
||||
EXPECT_EQ(0.0, result.energy);
|
||||
expect_vec3_near({0.0, 0.0, 0.0}, result.force, 1e-10);
|
||||
}
|
||||
|
||||
TEST_F(LennardJonesTest, AtMinimum) {
|
||||
// The LJ potential has a minimum at r = 2^(1/6) * sigma
|
||||
real min_dist = std::pow(2.0, 1.0 / 6.0) * sigma;
|
||||
Vec3<real> r = {min_dist, 0.0, 0.0};
|
||||
auto result = lj->calc_force_and_energy(r);
|
||||
|
||||
// At minimum, force should be close to zero
|
||||
EXPECT_NEAR(-epsilon, result.energy, 1e-10);
|
||||
expect_vec3_near({0.0, 0.0, 0.0}, result.force, 1e-10);
|
||||
}
|
||||
|
||||
TEST_F(LennardJonesTest, AtEquilibrium) {
|
||||
// At r = sigma, the energy should be zero and force should be repulsive
|
||||
Vec3<real> r = {sigma, 0.0, 0.0};
|
||||
auto result = lj->calc_force_and_energy(r);
|
||||
|
||||
EXPECT_NEAR(0.0, result.energy, 1e-10);
|
||||
EXPECT_GT(result.force.x,
|
||||
0.0); // Force should be repulsive (positive x-direction)
|
||||
EXPECT_NEAR(0.0, result.force.y, 1e-10);
|
||||
EXPECT_NEAR(0.0, result.force.z, 1e-10);
|
||||
}
|
||||
|
||||
TEST_F(LennardJonesTest, RepulsiveRegion) {
|
||||
// Test in the repulsive region (r < sigma)
|
||||
Vec3<real> r = {0.8 * sigma, 0.0, 0.0};
|
||||
auto result = lj->calc_force_and_energy(r);
|
||||
|
||||
// Energy should be positive and force should be repulsive
|
||||
EXPECT_GT(result.energy, 0.0);
|
||||
EXPECT_GT(result.force.x, 0.0); // Force should be repulsive
|
||||
}
|
||||
|
||||
TEST_F(LennardJonesTest, AttractiveRegion) {
|
||||
// Test in the attractive region (sigma < r < r_min)
|
||||
Vec3<real> r = {1.5 * sigma, 0.0, 0.0};
|
||||
auto result = lj->calc_force_and_energy(r);
|
||||
|
||||
// Energy should be negative and force should be attractive
|
||||
EXPECT_LT(result.energy, 0.0);
|
||||
EXPECT_LT(result.force.x,
|
||||
0.0); // Force should be attractive (negative x-direction)
|
||||
}
|
||||
|
||||
TEST_F(LennardJonesTest, ArbitraryDirection) {
|
||||
// Test with a vector in an arbitrary direction
|
||||
Vec3<real> r = {1.0, 1.0, 1.0};
|
||||
auto result = lj->calc_force_and_energy(r);
|
||||
|
||||
// The force should be in the same direction as r but opposite sign
|
||||
// (attractive region)
|
||||
real r_mag = std::sqrt(r.squared_norm2());
|
||||
|
||||
// Calculate expected force direction (should be along -r)
|
||||
Vec3<real> normalized_r = r.scale(1.0 / r_mag);
|
||||
real force_dot_r = result.force.x * normalized_r.x +
|
||||
result.force.y * normalized_r.y +
|
||||
result.force.z * normalized_r.z;
|
||||
|
||||
// In this case, we're at r = sqrt(3) * sigma which is in attractive region
|
||||
EXPECT_LT(force_dot_r, 0.0); // Force should be attractive
|
||||
|
||||
// Force should be symmetric in all dimensions for this vector
|
||||
EXPECT_NEAR(result.force.x, result.force.y, 1e-10);
|
||||
EXPECT_NEAR(result.force.y, result.force.z, 1e-10);
|
||||
}
|
||||
|
||||
TEST_F(LennardJonesTest, ParameterVariation) {
|
||||
// Test with different parameter values
|
||||
real new_sigma = 2.0;
|
||||
real new_epsilon = 0.5;
|
||||
real new_r_cutoff = 5.0;
|
||||
|
||||
LennardJones lj2(new_sigma, new_epsilon, new_r_cutoff);
|
||||
|
||||
Vec3<real> r = {2.0, 0.0, 0.0};
|
||||
auto result1 = lj->calc_force_and_energy(r);
|
||||
auto result2 = lj2.calc_force_and_energy(r);
|
||||
|
||||
// Results should be different with different parameters
|
||||
EXPECT_NE(result1.energy, result2.energy);
|
||||
EXPECT_NE(result1.force.x, result2.force.x);
|
||||
}
|
||||
|
||||
TEST_F(LennardJonesTest, ExactValueCheck) {
|
||||
// Test with pre-calculated values for a specific case
|
||||
LennardJones lj_exact(1.0, 1.0, 3.0);
|
||||
Vec3<real> r = {1.5, 0.0, 0.0};
|
||||
auto result = lj_exact.calc_force_and_energy(r);
|
||||
|
||||
// Pre-calculated values (you may need to adjust these based on your specific
|
||||
// implementation)
|
||||
real expected_energy =
|
||||
4.0 * (std::pow(1.0 / 1.5, 12) - std::pow(1.0 / 1.5, 6));
|
||||
real expected_force =
|
||||
24.0 * (std::pow(1.0 / 1.5, 6) - 2.0 * std::pow(1.0 / 1.5, 12)) / 1.5;
|
||||
|
||||
EXPECT_NEAR(expected_energy, result.energy, 1e-10);
|
||||
EXPECT_NEAR(-expected_force, result.force.x,
|
||||
1e-10); // Negative because force is attractive
|
||||
EXPECT_NEAR(0.0, result.force.y, 1e-10);
|
||||
EXPECT_NEAR(0.0, result.force.z, 1e-10);
|
||||
}
|
||||
|
||||
TEST_F(LennardJonesTest, NearCutoff) {
|
||||
// Test behavior just inside and just outside the cutoff
|
||||
real inside_cutoff = r_cutoff - 0.01;
|
||||
real outside_cutoff = r_cutoff + 0.01;
|
||||
|
||||
Vec3<real> r_inside = {inside_cutoff, 0.0, 0.0};
|
||||
Vec3<real> r_outside = {outside_cutoff, 0.0, 0.0};
|
||||
|
||||
auto result_inside = lj->calc_force_and_energy(r_inside);
|
||||
auto result_outside = lj->calc_force_and_energy(r_outside);
|
||||
|
||||
// Inside should have non-zero values
|
||||
EXPECT_NE(0.0, result_inside.energy);
|
||||
EXPECT_NE(0.0, result_inside.force.x);
|
||||
|
||||
// Outside should be zero
|
||||
EXPECT_EQ(0.0, result_outside.energy);
|
||||
expect_vec3_near({0.0, 0.0, 0.0}, result_outside.force, 1e-10);
|
||||
}
|
Loading…
x
Reference in New Issue
Block a user